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Transitions across a barrier induced by deterministic forcings
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The response of a bistable dynamical system to a deterministic forcing is studied with emphasis on the
kinetics of the passage across the barrier separating the two states, and compared to classical Kramers’ theory
describing the response to a Gaussian white noise forcing. The existence of nontrivial thresholds for the
occurrence of transitions is established. Analytic results complemented by numerical simulations are derived
for the characteristics of these transitions for periodic and chaotic forcings. The probabilistic properties of the
response are finally addressed and some connections are established with the universal stable distributions of
probability theory.
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I. INTRODUCTION 2
(r)%a-r[—u”(zo)u”(zs)]mex;{—zAU}. 3
Transitions across a barrier separating simultaneously g
stable states are among the most typical manifestations gfhese transitions require no critical threshold: they can be
nonlinearity. They can be induced by two types of mechasyitched on by any nonvanishing value gf, however
nisms. small.

(i) Initial perturbations exceeding some threshold, bring-  Traditionally noise processes model the effect of heat
ing the SyStem to the attraction basin of a state other than th?aths' that is to say, macroscopic systems at fixed tempera_
unperturbed “reference” state. ture composed of many particles such that their state is not

(i) External forcings. The most familiar and best studiedgffected by the action of the “small systenffiere described
example of this mechanism is provided by noise-driven syspy the variablez) with which they are interacting through
tems. In systems whose evolution derives from a potebtial some microscopic potential. Such systems are believed to
the problem can be mapped, following Kramers’ pioneeringexhibit dynamical chaos at the microscopic lef@l. In this
work [1], onto a Langevin equation or, in the presence ofrespect, noise and high-dimensional deterministic chaos
Gaussian white noise, onto a diffusion process governed by \gould appear to be two facets of the same reality.
Fokker-Planck equation. In the Simplest Setting of a Single On the other hand, progress in nonlinear dynamics and,
variablez, these equations read especially, chaos theory leads one to realize that in many

situations of interest the coupling of a system to its environ-
dz  dU(z) ment may exclusively involve macroscopic observables un-
ai- " ez TR (18 gergoing low-dimensionalnontrivial dynamics. A classical
example is provided by the dynamics of a chemically reac-
(F(1))=0, (F()F(t"))=q28(t—t") tive system in a medium undergoing hydrodynamic flow. On
a larger scale one may quote the turbulent transport of a
minor atmospheric constituent in the atmosphere. In both
cases the back action on the environment can be neglected,
since the size of the system of interest is much less than that
of the environment.
2 52 Under the .ab(.)ve. conditions the external forcing affegting
q P (Fokker-Planck equation the system’s intrinsic dynamlcs can no longer be a_lssmllat(_ad
2 9z to a noise process. Still the question, can a forcing of this
(2 kind induce transitions across the barrier, keeps its full inter-
est. The objective of the present paper is to address this

Let the noise strength? be much smaller than thaoten- guestion for a generic class of dynamical systems, with em-
tial barrier AU=U(zp) —U(zs), wherezs andz, stand, re-  phasis on the features brought by the deterministic character
spectively, for the reference stable state and for the unstabtsf the forcing with respect to Kramers' theory, E4$)—(3).
state separatings from a second simultaneously stable state.As one could expect, the existence of nontrivial thresholds
One can then show that the transitions acmsdepleting the  for the occurrence of transitions is one of these features. We
attraction basin ofzg occur on a characteristic time scale will see how it comes about and how it can be characterized
given by the Kramers’ formul@l] quantitatively. A number of further features will also be iden-

(Langevin equation (1b)

and

14 —d du

it dz\ oz
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tified, finding their origin in the fact that the probability den- z 1 15 \L
sities associated to low-dimensional deterministic dynamical
systems are defined on finite supports. //EE:O/
The general formulation is developed in Sec. Il. Sections / A
[Il and IV deal, respectively, with the cases of periodic and
chaotic forcings. The conditions for the existence of transi- . - 05
tions across the barrier are established. Analytic results are \L
derived on the characteristics of the transitions, compared | BRI S | ex
with and complemented by numerical simulations. Section V -1 0.5 07> 1\ 05 1
is devoted to the probabilistic properties of the response, N
with emphasis on the connections between the probability 1 05 )
densities obtained by our analysis and the universal stable /
distributions of probability theory. The main conclusions are \1' 7
summarized in Sec. VI. ///
1\ +-15

Il. GENERAL FORMULATION

Throughout this work we consider systems which, in the _ G 1 Hysteretic behavior of the resporseersus the forcing
. . B ’ ex in the adiabatic limit of Eq(4) with A =1. The arrows indicate

absence .Of forcing, admit two sw_n_ultane_ously sta_ble St_ead}ﬁe direction of evolution of initial perturbations.
states arising through a supercritical pitchfork bifurcation.
The amplitude of the deterministic forcing function relative
to the distance from the pitchfork bifurcation will be tuned
through a parameter. Using the normal form of the super- To gain a first insight into the behavior of the system just
critical pitchfork bifurcation[3], one may thus write the fol- defined, we introduce the scaled variables and parameters
lowing evolution equation replacing E¢L): T

A. The adiabatic limit

dz 5 (7)
a=)\z—z +ex(t), (4) e=\32p,

where x(t) is one of the output variables of aflow-  being understood that, x, and » are ofO(1). Oneobtains
dimensional ergodic deterministic dynamical system as-

sumed for simplicity to be of zero mea¢x)=0. Some spe- dw

cific examples considered in Secs. Il and IV include the hilH=W—W3+ 7X(t). 8
harmonic oscillator, uniform quasiperiodic motion on a torus,

the Lorenz equations, or the periodically forced Duffing os- e 1 .
q P y 9 It follows that if A ~1 is much smaller than the characteristic

cillator. In this setting, the steady state solutions in the ab-. ) :
sence of the forcing are time of x(t) the right hand side of Ed8) can be set equal to

zero. In thisadiabatic approximation
z.==*\"2 (stable,
(5) wi—w— 5x=0, 9
Zo=0 (unstable.
the forcing acts as an imperfection perturbing the pitchfork
The potentiall and the potential barriekU are given by bifurcation. Turning to the initial variables, this leads to a

) hysteretic behavior af versuse x, depicted in Fig. 1here as
U= _)\Z_+ z (6a) well as in the subsequent figures the quantities plotted are
2 4 dimensionless Starting, say, from the lower branch at point
(z= —\Y2,ex=0), the system will remain trapped in this
\? branch as long as the forcing has not reached a value corre-
AU=U(z0) ~U(z:)= 7 (6D sponding to the right limit point of th&shaped curve. Be-

yond this threshold the system will rapidly reach the upper
The effective strength of the forcing will be characterized bybranch(in view of the time scale difference referred eadlier
a suitably chosen nornz,|x|. For forcings having nontrivial and will remain therein until the forcing reaches a second
statistical properties, in order to achieve a meaningful comthreshold value corresponding to the left limit point, and so
parison with Kramers’ theory we will be led to relate the on. This leads us to a first estimate of the threshold value of
norm to the forcing variance the forcing strength necessary to induce transitions between
the two stable states,

£2x|2=q=¢%(x?), (60)
where the brackets denote an average taken over the invari- eclx|~ i)\s/z, (10)
ant probability density ok. 3v3
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where the right hand side is obtained by the condition that aq(z,t) J 5 ) 5?2
the discriminant of the cubic equatid8) should vanish in P 50\2—2 )a(zt)+e 7

order to have a double real root.

t
B. Liouvillian dynamics Xfodt C(t—t)a(zt"), (163

In order to establish the connection with the white noise hereC s th lation functi f the
limit and Kramers’ theory, it is necessary to address theVnere (t—t’) is the autocorrelation function of thepro-
probabilistic properties of the system. The probability den-eSS:
sity p(z;&x) for a valuez conditioned by a given value of the i — ,
forcing satisfies the Liouville equatidi3] C=t) = OxX()). (160

P We stress that truncation to second order alters some of the
— —[Nz—Z+ex]p(Z;eX). (11)  properties of the exact distribution satisfying the full Eq.
9z (14), in particular, its having a finite support as discussed

_ . . extensively later in this paper. The motivation for consider-
A more relevant quantity is the reduced probability denSItying this limit is that it allows one to identify a nontrivial

q(2), obtained by averaging the fuil over the realizations jitfarence with the Fokker-Planck equatié®), namely, the
of thex process(sincex is deterministic this implies averag- \on_markovian character of the dynamicsfThis feature
ing over an ensemble of initial conditions reflects the deterministic origin of the forcing and will also
be responsible for some differences of the statistics of tran-
q(z,t)ZJ dx p(z;eX) ps(X), (129 sition'times as compared to white noise-driven systems as
seen in Sec. IV.

) . ) - ) . One can obtain an indication of the role of memory ef-
where py(x) is the invariant probability o. Sinceps is  fects by comparing the contribution of the second term in Eq.
normalized to unity, the passage frgnto q can be viewed (169 to the contribution of standard diffusion. Performing
as a projection, successively a Fourier and a Laplace transform and applying

the convolution theorem, one has

dp(zZ;eX)
o

q=Pp, P2=P. (12b)
[s+8%k?C(s)JGk=q(0), (17)

where k and s are, respectively, the Fourier and Laplace
transform variables, the tilde denotes the Laplace transform
andq(0) is the initial distribution.

As well known the time-dependent properties of the prob-
and acting on both sides of E@l1) successively by’ and  ability distribution depend on the singularities of its Laplace
| —P, one obtains two coupled equations fgrand ( transform or, equivalently, on the zeros of the factor multi-
—P)p. Solving formally the second equation with an initial plying G.(s) in Eq. (17). To fix ideas we consider the fol-
condition in theP space results in a closed equation dpr ~ lowing model correlation function:

Introducing the Liouville operator

J 3
Ltz—g[)\z—z +ex(t)] (13

aq(z,t) C(t)=e " cosot,

ot

=PLq(zt)+ Pthdt’K(t,t,)“ -P)Lyq(z,t"),
0

where the operatok is defined by its formal series expan-
sion which reproduces the qualitative features of the correlation
function of a typical chaotic attractor. The singularities of
t t a i
14 f/dtl(l B P)Ltl+ f/dtl 0x(s) are then given by
! ! s+y

22
S & k(s—i—y)z-i-wz

t (183
xf dto(1 = P)Ly, (1= P)Ly,+- . (15)
t/

to be compared with those of the Markovian limit obtained

In this most general form, Eq14) is intractable. To ob- by takings=0 in the right hand side of Eq183),
tain some useful information we therefore truncate the infi-
nite serieq15) to the first nontriviallhere secondorder ine oo Y
in the limit of smalle. To allow for transitions between states Su=—ek Y+ w? (180
one should further consider the limit of small(vicinity of
the pitchfork bifurcation One obtains then after a straight- Solving Eq. (183 iteratively for smalls (small k), one ob-
forward calculation, tains
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2 2

v+ Sy w =y z ' ' a
21,2 2
s~—g“k ~S\y+S . (19

(y+sy)Ztw? “MTMY210?)

Sincesy, is negatives will be smaller in absolute value than
|su| as long asw> vy or, equivalently, as long as the decay 1
time of the correlation is not smaller than the period of the
background oscillation. This condition is expected to be sat-
isfied in systems generating deterministic chaos organizec
around an unstable periodic or a homoclinic orbit. Under
these conditions the spectrum of characteristic times of dif-
fusion will be shifted toward larger values. We have here
identified a second signature of the deterministic character o -2
the forcing: whenever transitions are possi@igich accord-
ing to Sec. Il A can happen only when a certain threshold , , ,
condition is satisfied they are expected to occur on a time 0 50 100 150 t 200
scale longer than the one provided by Kramers’ equatn

In the sequel, the analysis of this section will be applied to
systems subjected to periodic and to chaotic forcings. ' , - - T '

<bz%> L b |
I1l. PERIODIC FORCING
We first consider a purely harmonic forcing. Equatidh
becomes 2+ .
dz 3 L
a=)\z—z +acoswt. (20

Under the scaling of Eq(7) the adiabatic limit is readily
achieved by takingp<<\. Owing to the absence of intrinsic - 1
variability the natural norm in the threshold condition of Eq. ‘___,”J
(10) is the maximum norm—the forcing amplitude. This 0
yields : : -

ac:i)\3/2_ (21) FIG. 2. (a) Long time evolution ofz in the presence of a purely
3v3 harmonic forcing, Eq(20), with an amplitude well above threshold

(21) as provided by the adiabatic approximation. Parameter values
The numerical integration of Eq20) confirms fully this arex=2, ®=0.1, anda=2\*?>a.. (b) Bifurcation diagram de-
condition. Figure a) depicts the responsein the case of scribing the birth of a large amplitude oscillation of the type de-
w=0.1,\=2 and a value well above the threshold. As canpicted in(a beyond the critical value of the forcing amplitufigg.
be seen the variable performs transitions between the basifil]-
of attraction of the stable states\'? of the unforced sys-
tem, with a periodicity equal to that of the forcing. The re-  The maximum norm and the standard deviation of the
sponse is markedly nonsinusoidal, owing to the nonlinearitforcing are, respectively,
of the intrinsic dynamics of. An alternative representation

in the form of a bifurcation diagram is provided in Figbp, |X| max=v2a,

where the amplitude of the response is plotted againgte (22b)
observe a sharp transition between a small amplitude oscil- a

lation around state- \'? and a large amplitude one around q= E

zero associated to transitions between the two stable states, at

a critical value which is numerically indistinguishable from
y 9 We choosew;<<\ and varyw, gradually from values close

Eq. (22).
A more intricate situation relates to the presence of mul° @1t values comparable to or greater tharin all cases,

tiperiodic or quasiperiodic forcing. To fix ideas, consider 22 transition from a small amplitude oscillation around one of

1/2 R H :
forcing deriving from a uniform quasiperiodic motion. Equa- ;ﬁguﬁtjakz)leerositsato%feﬁve dtgs 265:9;[? F?g%ﬁ:fioﬁzgnggg?
tion (4) becomes ' P

ing critical amplitudesa, vary according to the relationship
betweenw, and\, see Fig. ). For w, significantly smaller
dz a . ; . . .
——=\z— 234+ — (COSw t+ COSw,t). (229  than), a is obtained when the maximum norm is used in
dt V2 Eq. (10),
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0 100 200 300 400 t 500

FIG. 3. (a) As in Fig. 2a) but in the presence of a quasiperiodic
forcing with w;=0.1,a=2)\%? w,=v2w,. (b) Dependence of the
critical forcing amplitudea, necessary for the birth of a large am-
plitude quasiperiodic oscillation on frequeney keepingw, andi
at the same values as (g).

V2
a;=——\%?  (w,<\).
33 (w2<\)

In contrast, asw, becomes significantly larger than the
threshold conditior(10) is to be formulated in terms of the
variance, yielding

2\/7)\3/2 (035 0)
Ac=—— Wo= .
‘33 2
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modes. The fast modes are ineffective in causing a transition,
and this increases the value of the critical amplitude needed
to overcome the threshold. The variance provides, then, a
more adequate measure of the effective strength. This will be
confirmed further in Sec. 1V devoted to the effects of a cha-
otic forcing.

In the remaining part of this section we will be interested
in the solutions of Eq(20) in the vicinity of the bifurcation
point and in the limit of weak forcing amplitude. This will
allow us to achieve a quantitative understanding of some key
aspects of the dynamics of the transitions.

A. The inner expansion

To allow for transitions between states in the above limit
one must make sure that the forcing amplitude competes
with the distance from the bifurcation. This brings us in the
domain of singular perturbation analysis and, in particular, of
the inner expansiopd]. Specifically, we adopt the following
scaling in Eq.(20):

a=¢gb,
(23)
)\2821/, e<l
along with an expansion of in powers ofe,
z=ezy+e%2,+ €325+ (24)
To the first few orders, Eq20) becomes
94 cosot 24
at COoSwt, (248
9z _, 24D
H_ ’ ( )
dz
d_t3 =vz,—Z5. (240

Equation(24a can be integrated straightforwardly to yield
b
zlzasme—C. (25)

The integration constan€, which also provides the time
average of the dominant par of the solution, is determined
from the solvability condition of Eq(240. In the present
case this condition merely requires that the time average of
the right hand side vanishes. Utilizing the fact that the time
averages of both siat and siff ot vanish, one obtains after a
straightforward calculation the following algebraic equation
for C,

This result has a straightforward explanation. When all forc-

ing modes are much slower that the system’s characteristic

times, the adiabatic approximation holds globally. A transi-

3b? 5
_ﬁ CcC—-C°=0. (26)

tion will therefore take place as soon as the maximum value

of the forcing will exceed the threshold of Ed.0). When on

Equation(26) admits three solutions,

the contrary the time scales of the forcing and of the system

mix, the adiabatic approximation holds only for the slow

Co=0, (279

046211-5
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2\ 1/2 T
C.==+ y—ﬁ (27h j 2
+ 2w 04 4

The latter bifurcate from the trivial solution at a valug
=3b?%/2w? or, reestablishing the original parameteds, 0.2 .
=3a’/2w?. Remembering that in the absence of forcing one :
has A\;=0 and bifurcating branches equal t~ecz;=

+ ¢ one deduces that the presence of the forcing pre- o |- /- — - -
serves the character of the unperturbed pitchfork bifurcation,
but shifts the bifurcation point to the right. Now, in the re-
gime of transitions between states one must clearly have i o2 | i
vanishing long time average af This means that the solu-
tion Cy=0 should prevail or, alternatively, th&. are not
real quantities. This can be achieved either by a sufficiently 4 . . .
large amplitudéy, or by a sufficiently low frequencw. The 0 50 100 150 t 200
latter condition leads us to the adiabatic approximation ana-

lyzed earlier in this section, while the former condition

yields
b
2
b> bc= \[5(1)1/1/2 04 ]

or, reestablishing the original parameters, 02 k-

2
a>a,= \[gw)\l’z. (29 .

This relation replaces the threshold conditi®1) obtained
in the adiabatic approximation, to systems which operate ,,
near bifurcation and do not exhibit the time scale separatior
required by this approximation. Finally, wher<a, the sys-
tem performs asymptotically oscillations around a mean 04 . . .
value given byC_ or C, , depending on the initial condi- o 50 100 150 ¢t 200
tion.

The above results are fully corroborated by the numerical
integration of Eq(20) under the conditions of Eq23). Fig-
ures 4a,b describe the time dependencezajbtained when <2s . , . .
the forcing amplitude is, respectively, larger and smaller than 02 | ¢
the threshold valua.. The corresponding bifurcation dia- '
gram is depicted in Fig. (4). As it turns out the threshold
value (28) is reproduced with high accuracy. o1

From the outset, the analysis performed in this section hac
been limited to the long time behavior of the solutions. On
the other hand, as Fig(l#) shows, the basins of attraction of 0 i
C, andC_ are not entirely limited to, respectively, positive kc \
and negativez's. This implies that the dynamics should in- N
volve nontrivial transient behavior such as an initial condi- -0
tion in the rangez(0)<0 evolving toward a stable oscilla- ~ o
tion aroundC, and, conversely, an initial condition in the ~ .
range z(0)>0 toward a stable oscillation arour@_. In 0z r T
both cases one would witness an escape over the barrier. Th . . :
problem is addressed in the following section.

T
/7
L

B. Transient behavior: escape over the barrier

The most favorable situation for crossing the barrier in the  FIG. 4. As in Fig. 2 but when Eq20) operates near the bifur-
subcritical casea<a is to start near the unstable state cation with a forcing amplitude above threshé®B) and A =0.01
=0 of the unforced system. Equatig20) can then be lim- (a) and below threshol@8) and\ =0.07 (b). Parameter values are
ited to its linear part, »=0.5 anda=0.1.

046211-6
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0.6 . . . )
0 40 80

FIG. 5. Transient behavior afunder the conditions of Fig.(d)
starting fromz(0)= —0.05 (full line) and z(0)= —0.062 (dashed
line) with parameter values=0.2,a=0.1, andw=0.5.

dz

T =\z+acoswt, (299
whose solution is given by
AeM—\ coswt+ o sinwt
z=z(0)eM+a (29b)

N+ w?

It is understood that the system still operates in the range of

the scaling of Eq(23).
We assuméwithout loss of generalifythat z(0)<0. We

PHYSICAL REVIEW 7, 046211 (2003

z (0)

0.1

-0.1

-0.2 L 1 ~ L L L L L
-3 2 1 0 1 2 g 3

FIG. 6. Range of initial conditiong(0) escaping eventually to
the solution of positive mean valug and of negative mean value
z_ versus the phase of the periodic forcing of Eq(20) operating
near bifurcation under the conditions of Figb#t Full line repre-
sents the numerical results after a transient time of B&/w and
dashed line stands for the linearized estimate (B86). Parameter
values are\=0.2, »=0.5, anda=0.1.

condition of Eq.(30). To this end we derive an evolution
equation for the excess variahlét) =z(t+T) —z(t) intro-
duced above, see Ref5]. From Eq. (20) one obtains
straightforwardly, utilizing the periodicity of the forcing,

du
a=()\—322)u—32u2—u3.

stipulate, in agreement with the numerical solution of the full
Eq. (20), that the escape over the barrier and the stabilizatio
to a stable oscillation aroun€, will occur when z((n
+1)T)—z(nT) will be positive for n=0,1,..., whereT

In the linearized analysis adopted in this section, one only
Meeds to retain the first term in the right hand side, yielding

t
=27/ w is the forcing periodFig. 5. Using Eq.(29b we u(t)zu(O)exp{)\t—3f dt’ Z2(t")|. (3D
can write this inequality fon=0 in the explicit form 0
an For consistencyu(0)=z(T)—2z(0) is to be evaluated from

(300 Eq.(29b), andZz(t’) in the integral is to be replaced by its
initial value. The time needed to reach a finite leveli§f),

say A, can now be estimated by inverting E§1),

Z(O)>Zc= — W

We see that the range of initial conditions escaping from
<0 is enhanced a& and\ are decreased. These rather in-
tuitive conclusions are fully corroborated by the construction
of “state diagrams” from the numerical solution of the full
Eq. (20).

The above analysis can be extended to include the depemherez, is given by Eq.(30). Using a uniform ensemble of
dence on the phase of the forcing, by solving E29a with initial conditions in the rangez(,0) one can express the
a forcing terma cos(t+ 6). The analytic and numerical re- mean crossing timér) as
sults are summarized in Fig. 6. Notice the enhanced destabi-
lization for negative forcing phases. This can be understood
qualitatively by observing that with such phases the forcing
keeps a positive value until the response reaches a second
maximum larger than the first one, thereby allowing the sys
tem to attain a “point of no return” beyond which escape is
inevitable.

We next provide estimates of the time necessary to cross
the barrier starting from a certain(0), under the escape

B 1 A
~ =320 "[20) -] (@ -1)

(32)

T

_ 1 0 1 A
(=12 Ldz(o) N—32200) "[Z0)— 2] 1)

or, for |z{|—0

1 1

<7)~—)\_322|nm. (33
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<T> z, &X
80 ]
1 i
70 . 05 ‘ M‘
0 j
60 . ‘
05 i b
50 j
R J
40 ] 1 1 1 1
0 0.05 0.1 0.15 a 02 0 20 40 60 80 ¢ 100
FIG. 7. Time needed in the mean to reach eventually solation ~ FIG. 9. Kinetics of a transition of from statez_ to z, (dark
starting from negative versus the amplituda of the periodic forc-  lin€) superimposed to the chaotic evolution of the forcing with the

ing under the conditions of Fig. 6 with= 0. Initial conditions scan Same parameter values as in Fig. 8.
2000 values &z(0)<-1.

x(t) corresponding to thg variable of Lorenz’s classic cha-
This expression predicts a logarithmic increaseg(©fwith otic attractor (=28, =10, b=2, Ref.[6]) and to a cou-
the forcing amplitude—the analog of the paramegein  pling parametee =0.07. We see that the variable performs
Kramers’ formula(3)—for small forcings, followed by a transitions between the attraction basins of the two stable
minimum at a value of of the order o\’ This result may  states of the unforced system. To gain a first understanding of
be qualified as a stochastic resonancelike effect in the sensige mechanism of these transitions we refer once again to the
that there is an optimal forcing strength for which transitionsadiabatic limit(Fig. 1). For the parameter values of Fig. 8,
are facilitated. Alternatively, one may also speak of resonanthe estimate of Eq(10) would give a threshold value for the
activation in the sense of RdflL] The point is that this type transitions to be switched on @f,=0.385. The numerical
of behavior is quite different from the behavior predicted bysolution of Eq.(4) yields the slightly larger value of 0.406
Kramers’ theory. It is also fully corroborated by numerical for a waiting time interval 19time units. The difference is

solutions of the full equation as shown in Fig. 7. acceptable, in view of the fact tha(t) involves a multitude
of time scales as a result of which the adiabatic limit cannot
IV. CHAOTIC FORCING be defined as sharply as in the periodic case.

To understand the kinetics of the transitions we consider,

In this section we deal with the case where the forcingin Fig. 9, a zoomed slice of the time series of Fig. 8 along
x(t) in Eq.(4) is one of the output variables of a continuous-with the time variation of the forcing. As can be seen, the
time chaotic dynamical system. To set the stage we depict iransition (here from negative to positive values of re-

Fig. 8 the time dependence of the respord¢ to a forcing  quiresrepeatedcrossings of the thresholgl, by the forcing
during a time interval much longer than ! throughout

z ' ' ' ' which, in addition, the forcing remains positive. The need for
such a build up reflects the nontrivial intrinsic variability of
1 . the forcing and the inertia of the underlying system—in turn,
a consequence of its deterministic character. Similar results
are derived(not shown herg in the presence of forcings
corresponding to the variable of the Lorenz’s attractor in
the range of intermittent behavipr], or to the position vari-
°r - able of the periodically forced Duffing oscillatf8]. Notice
that in the presence of intermittency the threshold estimate of
05 | y Eq. (10) vastly underestimates the actual value. This reflects
the failure of the adiabatic approximation in this case, a fact
that can be attributed to the long range correlations charac-
teristic of the intermittent regime.

An interesting view of the response of the system to the
chaotic forcing is provided by Fig. 10, where the time cross
correlation(x(t)z(t")) of the variables< andz (full line) is

FIG. 8. Long time evolution of, Eq. (4) sampled every 1 time depicted. We see that the characteristic decay time is very
unit, when the forcing is provided by variable of the Lorenz  large, much larger than the correlation time of the forcing
system withr =28, o= 10, andb= £, and forn=1, £¢=0.07. and the relaxation time of the unforced system. For compari-

05 - 4

0 200 400 600 800 t 1000
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of InNin (g2—qg?) %2, see Ref[9]. The full line in Fig. 11
gives a fitting of the numerical data by a function of the form

—A

N=Ngexg —s———r| . 34
0 p[(qz—qi)l’2 (34

004 - The agreement is quite satisfactory, thereby corroborating the

arguments just advanced. The expondnfeatured in Eg.
(34) can be interpreted as an effective, forcing-modified “po-
tential barrier” and the prefactaN, is proportional to the
time interval considered and inversely proportional to the
intrinsic time scale of the unforced system.
The upper part in Fig. 11full circles) describes the be-
. . . . havior of N as deduced from Eq4) subjected to a white
0 100 200 300 400 {500 noise forcing of variance equal t02< 5x2). We are therefore
here in the domain of validity of Kramers’ theofiN being
FIG. 10. Cross correlation of the varialdét) and forcingex(t) inversely proportional tg7), Eq.(3)]. Two major differences
under the conditions of Fig. ®ull line) and the ones provided \jth the chaotic forcing-induced transitions are apparent.
when ex(t) is a Gaussian white noise with variangé=0.15  First, as pointed out already, there is now no threshold value
(dashed lingsuch that mean rgsidence times in the attraction basiry¢ q: transitions are switched on as soonqisis not zero.
of the stable states are equal in both systems. And second, for any given values qf aboveg? transitions
are more frequent in the presence of white noise. This re-

son we also plokbroken ling the cross correlation for a flects the effect of correlations present in the deterministic

v_vh|te n0|se.forcmg giving rise to the same mean trans't'oq‘orcing. It is also in accord with results where white noise
time. Long time memory effects have now completely dlsap'orcing is replaced by a colored noise one, as reviewed in

peared. These results add credence to the interpretation of t 2f.[1]. Notice that the range of validity of Kramers’ theory

results of Fig. 9 advanced above. . :
We turn now to a more quantitative analysis of the tran-S actually restricted to values of less than or about equal

sitions depicted in Figs. 8 and 9. Figure Gampty circles to qg_, sincg for the values considered in Fig. 11 the potential
describes the dependence of the nuntbef transitions de- barrierAU is equal to 0.25.

tected in a givenlong) time interval for the same type of Si”?”af results(not shown h_er)eare deriyed fOT a forcing
forcing as in Figs. 8 and 9, as a function of the variagée X(t) given by Lorenz’s equations in the intermittent region

= £2(5x?) introduced in Sec. II. As expectel,tends to zero [7] and by the periodically forced Duffing oscillatf8]. The

for q below some value—the threshold value identified earMain differences are as follows. In the first case, as men-

lier in this section. Furthermore, the slope oNrversusg? tioned earlier, the threshold, is much higher. The fitting

appears to be very abrupt near this threshold. This is rem{¥ith EQ. (34) is also less satisfactory, owing presumably to

niscent of the critical slowing down near the limit point bi- t.he_ fact.that'the ac.iiabat'ic limit and hence'the relevance of the
furcation associated g, (Fig. 1) and suggests a dependence“m't point bifurcation (Fig. 1) are not appllgable. As.for the
second case, one observes a plateau regiondffdm inter-

; : . mediate values of|. We conjecture that this reflects the bi-
modal character of the probability density associatec,to
] entailing that the variance is no longer as representative as in
the monomodal case corresponding to Fig. 11.

The results pertaining to Fig. 11 can also be expressed in
] terms of the transition times themselves. We first recall that
as it was already remarked, the mean transition times are
inversely proportional to the quantity plotted in Fig. 11. A
more comprehensive information is provided by the prob-
ability density of the transition times. In white noise-driven
bistable systems this distribution is exponential in the Kram-
ers’ regime[10],

0.02 |

N

10* +

1000 |

100 |-

10
P(7)=(7)"texp —7/{r)) (white noise-driven system
(39

Figure 12 summarizes the differences arising when the

FIG. 11. Number of transitions during 1@ime units versug>  bistable system is driven by a chaotic forcing. Here the prob-
for the system of Fig. 8empty circleg and the one corresponding ability densities are plotted for two different values of the
to Kramers’ theory(full circles). Full line stands for the best fit by variance, curvega) and (b). We observe a difference of the
Eg. (34) with A=1.3247,q.=0.406, and\,=13 969. densities associated to chaotic forcir@dgl lines) from the

1 1 L 1 1 1
0.1 0.2 0.3 0.4 05 0.6 q
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p [¥ ' T ‘ keeping first the parametarto O(1). Taking, to fix ideas,
the plus sign in Eq(37) one obtains to the first few orders
dz
0015 | d—tl:—Z)\zl+X(t), (38a
dz
001 | d_tz =—2\Z,— 3)\1’225. (38b
The solution of Eq(38a subject toz,(0)=0 is
0.005
t
zl(t)ze’z“f dre?"x(7) (39
0
0 25 50 75 100 125 T with (z;)=0. In contrastz, has a nontrivial average value

FIG. 12. Probability densities of transition times when the sys-glverl by

tem is driven by thex variable of the Lorenz system of variance 3
g?=0.40(a) andg?=0.31(b) (full lines); and by a Gaussian white (25)= — =~ (Z2). (40)
noise (dotted line$ leading to the same mean val(® as the de- 2\

terministic forcing as obtained from 50 000 transitions. The associ- o . o )
ated forcing variances in this latter case a2=0.20 andg?  'his contribution can be qualified as “destabilizing” in the

=0.15, respectively. sense that the gap between the reference atHfeof the
unforced system and the unstable stateO is reduced.

law of Eq. (35) in the form of a depression for smafls ~ Computing(z}) from Eg.(39) one obtains

followed by an overshoot and, finally, by a rapid t t

exponential-like decrease. We suggest that the origin of this ,_», _ _ant , N .

behavior is in the non-Markovian character of the truncated (z)=- PN fodT fodf e Cool' =),

Liouvillian dynamics(Sec. Il B), entailing that transitions in (41)

the range of short times are penalized. We have also plotted

in the same figure the probability densities of transition timesvhere C,,(t) is the autocorrelation function of the forcing

corresponding to a white noigdashed lines To render the variable x. As an example for an exponentially decaying

comparison meaningful, we consider distributions having thec,,,

same mean transition timé¢g¢r)~55 (a); (7)~120 (b)] as

those generated by the chaotic forcifmyeaning that the as- Cu(t)=Cqpe™ 7, (42

sociated variance values are diffepentvhile in the white

noise-driven system the exponential of E85) provides a one obtains

perfect fit, the distribution in the chaotically driven system is

significantly different for times up to values of the order of 3G 1

the mean valuén. (z2)=~ A2 202N+ )"
We finally address the effect of a weak chaotic forcing

acting in the vicinity of the pitchfork bifurcation of the un- This provides one with an estimate of the threshold value of

forced system. The main point is that in the range of thes2C, (the analog ofj? of our previous analysjisiecessary to

scaling of Eq.(23) the expansion of Eq24) becomes inad- overcome the unstable point=0,

equate. Specifically, it leads to the dominant order to the

(43

equation A2+ £2(2,).=0,
dzl B 36 or
ot X, (36)
w2 2h 12
: : . . (eCp)e~—=(2N+y) (44)
which defines anonstationaryprocess as long a(t) is a V3

stationary process with a finite correlation time, as is the case

of typical chaotic systems contrary to periodic of®se Sec. to be compared with Eq29) derived in the case of the

V for a more detailed discussion of this poinfo get some periodic forcing. For below this value the long time behav-

insight on the response we therefore adopt the more tradier of the system will be a chaotic oscillation around a mean

tional outer expansiofb] in which z in Eq. (4) is expanded given by = (\¥2+£%(z,)); and fore above this value tran-

as sitions between the two attraction basins of the unforced sys-
tem are expected. These predictions are corroborated by the

7=+ NVt ez, + %25+, (37)  numerical solution of the full equations.
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V. PROBABILISTIC STRUCTURE OF THE RESPONSE

In this section we analyze the consequences of the prop "
erty of x(t) to derive from a probability distribution possess-
ing abounded supporas opposed to the infinite support of
the normal distribution involved in Gaussian white noise and L
of other universal distributions of probability theory. The
specific question we shall address pertains to the repercus®%*
sions of this property in the probabilistic structure of the
response variable Could it be that the probability distribu-
tion of z is attracted toward one of the stable laws of prob- 0.0z
ability theory[11] or, rather, does it keep a finite support and
if so how is it related to the characteristicsg(fx). We shall
limit our analysis to forcings generated by low-dimensional |
chaos. High-dimensional chaotic dynamical systems such a - . . :
spatially extended systems or coupled locally chaotic cells 3% -200 -100 0 100 200z 300
are indeed known to produce, under certain conditions, prob- g 13. probability density of, Eq.(45), with x(t) the variable
ability distributions approaching those of stochastic systemg of the Lorenz system aftar=50 time units(dashed ling andt

[12]. ) _ ) =100 time units(dotted ling. Full line is a Gaussian probability
In order to disentangle the relative roles of damping andjensity with the same variance.

of nonlinearity we first consider the limiting situations asso-
ciated to two truncated versions of Hd) before addressing
the full problem, indicating a diffusive behavior of. More to the point, the
conjunction of Eq.(48), in particular of the fact that5z>)
—oo, and of the finite support of the terms in the S(AT)
m=sx(t), (45 implies that the Lindeberg condition familiar from probabil-
ity theory is satisfiedi11]. It follows that the distribution of
dz tends to the normal distribution, one of the stable laws of
— = —\ztex(t), (46)  probability theory and the only for which a second moment
dt exists. The dashed and dotted lines of Fig. 13 depict the
density ofz at two different times resulting from numerical
to which we shall refer, respectively, as the generalizedntegration of Eq.(45) and with a forcingx given by the
Wiener process and the generalized Ornstein-Uhlenbeck pr@-orenz x variable, while the full one is a fit by a Gaussian
cess. distribution having the same variance. The agreement is very
satisfactory. Clearly, we have here a universal mechanism of

A. The generalized Wiener process, Eq(45) deterministic diffusion.

Integrating Eq(45) one has

0.006 [

l

B. The generalized Ornstein-Uhlenbeck process, Eq46)
NAt

z(t)—z(O)=sf;drx(7)~sAtJZl X(jAb). (a7) The solution of Eq(46) reads

t
z(t)—z(O)zse*“j dreMx(r7)
In this representatioz(t) —z(0) is expressed as a sum of 0

variables, each term of the sum being distributed according NAt
to a density carried by a finite intervad/hich is the same for ~gAtD) e MIN-Dy(jAt) (49)
i=1

all terms in view of ergodicity On the other hand, keeping

in mind that(x)=0 and hencéz)=0 as well one obtains for ) ) _
the variance of, implying thatz(t) —z(0) is again a sum of terms each one of

which possesses a distribution with a finite support. But in
contrast to the case in Sec. V A, the variance(@j —z(0) is

<522>:Szf;dTJ';dT’<X(T)X(T')> now

t T
t T 828 =2 Ze*Z}“J d ez”J dpe C .
~282f0drf0dncxx(7;). (62%)=2¢ e | dy we)

While, as in Sec. V A, the second integral gives a finite con-
As long asC,,(#) is short ranged, the upper limit of the tribution, the divergence found in Sec. V A is now counter-

second integral can be pushed to infinity and one has acted by the exponentially decaying face®r?\!, entailing
that( 5z%) tends to a finite value as— . It follows that the
(62%)~t (48) Lindeberg condition is not satisfied this time and, since the
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p ' ' ' ' ‘ maxima of the probability density of on the two sides of
12 | 1 x=0 atx values beyond the threshold valueqfin Eq. (10)
but below= A2 This favors transitions tavalues different
1L {  from £ \%2and, since these states have sizable lifetimes ow-
ing to the deterministic character of the dynamics, they con-
08 L ] tribute significantly to the probability mass. This accounts
for the inner secondary peaks. As for the outer ones, they
may simply reflect the fact thgi(z) must strictly drop to
06 I 1 zero not far from= N 2. A similar phenomenon happens in a
harmonically forced linear system, whose probability density
04 | . displays an integrable singularity at the end points of its
support.
02 4
VI. CONCLUSIONS
°_1'5 P o5 o 05 variable In this work some features brought when a dynamical

system transits across a barrier under the effect of a deter-
FIG. 14. Probability densities of variabkeof the Lorenz system ministic forcing have been identified, as compared to the

(full line); of z, Eq. (46) (dotted ling; and of the full nonlinear familiar case of Gaussian white noise-induced transitions.
system, Eq(4) (dashed lingwith A\=1 ande=0.07 as obtained Both the adiabatic limit and the vicinity of bifurcation have
after an integration of 10time units sampled everyt=0.1 time  been explored for forcings deriving from low-dimensional
units. dynamics such as simple harmonic, periodic nhonharmonic,

quasiperiodic, and chaotic. It was shown that owing to the
distribution of x itself is not Gaussiaricontrary to a white finite support of the probability density of the forcing, the
noise forcing, see Ref13]), the distribution ofz will notbe  gccurrence of transitions requires nontrivial threshold condi-
attracted by the Gaussian distributiphl]. As a matter of tjons. This gives rise to a dependence of the rate of transi-
fact it will not be attracted by any of the other stable |aWStionS on the forcing Strengm’variance which is quite differ-
since, contrary to these laws, it possesses a second momeght from the one featured by Kramers’ theory. This property
The dotted line in Fig. 14 depicts the asymptotie«(>)  in conjunction with the memory effects inherent in the deter-
distribution of z when Eq.(46) is forced by the Lorenzx  ministic character of the forcing also entails that when pos-
variable(the distribution of which is shown in the figure by sjple, transitions occur on a slower time scale.
the full line), as obtained from numerical integration. The  The finite support of the forcing probability density has
distribution possesses now a finite support, contrary to th@iso some repercussions in the probabilistic structure of the
case of Fig. 13. Although its analytic structure cannot beesponse. Typically, the response probability density also
obtained in closed form it can formally be represented as apossesses a finite support. As a result it has no universal
infinite convolution along the lines of RefL1], Chap. VIII5.  character, contrary to the stable distributions featured in the
The fine structure persists when thepace is divided into 50 probability theory. It is only in the limit where the nonlinear-
up to ~20 bins, but no convincing explanation can be ad-ity and the damping are absent, referred as the “generalized

vanced at this stage. Wiener process” in Sec. V, that one tends to a stable law in
the form of the Gaussian distribution, reflecting the onset of
C. The nonlinear case, Eq.(4) deterministic diffusion.

The work reported in this paper can be extended in sev-
eral ways. For one-variable systems, other types of bifurca-
tion such as the limit point and transcritical bifurcations as
well as higher codimension phenome(tautterfly catastro-
phes, etg.deserve study. Another interesting class is multi-
variate systems, since they can possess simultaneously stable
steady states, limit cycles and more complex sets, separated
by nontrivial invariant manifolds. Finally, a natural question
to raise is whether, in this setting, stochastic resonancelike
effects could be induced by the presence of a secondary pe-
riodic forcing.

We turn finally to the full nonlinear problefieg. (4)]. For
a Gaussian white noise forcing(t), the probability density
of the response would be a bimodal distribution with two
equal maxima located at=+\?, a minimum az=0 and
tails tending exponentially to zero gg— . In the presence
of a deterministic forcinghere given by the Lorenx vari-
able the situation is substantially different, as illustrated by
the dashed line of Fig. 14. First, as in the two previous sec
tions, p(z) is limited to a finite support. Furthermore, while
the absolute minimum a=0 persists, the probability den-
sity of the response seems to possess local minine=at
=12 reflecting the splitting of the probability mass on the
two sides ofz=0 into two secondary peaks situated on the
two sides of+=\'2. This fine structure seems to be statisti-
cally stable: it persists when tlzespace is divided into 50 up The present work was supported, in part, by the Belgian
to ~25 bins, and disappearfto become a simple bimodal Federal Office for Scientific, Technical and Cultural Affairs
distribution only in the much coarser subdivision into 14 under Contract No. MO/34/004 and by the European Space
bins. We suggest that it may find its origin in the local Agency.
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