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Transitions across a barrier induced by deterministic forcings
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The response of a bistable dynamical system to a deterministic forcing is studied with emphasis on the
kinetics of the passage across the barrier separating the two states, and compared to classical Kramers’ theory
describing the response to a Gaussian white noise forcing. The existence of nontrivial thresholds for the
occurrence of transitions is established. Analytic results complemented by numerical simulations are derived
for the characteristics of these transitions for periodic and chaotic forcings. The probabilistic properties of the
response are finally addressed and some connections are established with the universal stable distributions of
probability theory.
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I. INTRODUCTION

Transitions across a barrier separating simultaneo
stable states are among the most typical manifestation
nonlinearity. They can be induced by two types of mec
nisms.

~i! Initial perturbations exceeding some threshold, brin
ing the system to the attraction basin of a state other than
unperturbed ‘‘reference’’ state.

~ii ! External forcings. The most familiar and best studi
example of this mechanism is provided by noise-driven s
tems. In systems whose evolution derives from a potentiaU
the problem can be mapped, following Kramers’ pioneer
work @1#, onto a Langevin equation or, in the presence
Gaussian white noise, onto a diffusion process governed
Fokker-Planck equation. In the simplest setting of a sin
variablez, these equations read

dz

dt
52

]U~z!

]z
1F~ t !, ~1a!

^F~ t !&50, ^F~ t !F~ t8!&5q2d~ t2t8!

~Langevin equation! ~1b!

and

]p

]t
5

2]

]z S 2
]U

]z D p1
q2

2

]2p

]z2 ~Fokker-Planck equation!.

~2!

Let the noise strengthq2 be much smaller than thepoten-
tial barrier DU5U(z0)2U(zs), wherezs andz0 stand, re-
spectively, for the reference stable state and for the unst
state separatingzs from a second simultaneously stable sta
One can then show that the transitions acrossz0 depleting the
attraction basin ofzs occur on a characteristic time sca
given by the Kramers’ formula@1#
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^t&'p@2U9~z0!U9~zs!#
21/2expF 2

q2 DUG . ~3!

These transitions require no critical threshold: they can
switched on by any nonvanishing value ofq2, however
small.

Traditionally noise processes model the effect of h
baths, that is to say, macroscopic systems at fixed temp
ture composed of many particles such that their state is
affected by the action of the ‘‘small system’’~here described
by the variablez! with which they are interacting throug
some microscopic potential. Such systems are believe
exhibit dynamical chaos at the microscopic level@2#. In this
respect, noise and high-dimensional deterministic ch
would appear to be two facets of the same reality.

On the other hand, progress in nonlinear dynamics a
especially, chaos theory leads one to realize that in m
situations of interest the coupling of a system to its enviro
ment may exclusively involve macroscopic observables
dergoing low-dimensionalnontrivial dynamics. A classica
example is provided by the dynamics of a chemically re
tive system in a medium undergoing hydrodynamic flow. O
a larger scale one may quote the turbulent transport o
minor atmospheric constituent in the atmosphere. In b
cases the back action on the environment can be negle
since the size of the system of interest is much less than
of the environment.

Under the above conditions the external forcing affect
the system’s intrinsic dynamics can no longer be assimila
to a noise process. Still the question, can a forcing of t
kind induce transitions across the barrier, keeps its full in
est. The objective of the present paper is to address
question for a generic class of dynamical systems, with e
phasis on the features brought by the deterministic chara
of the forcing with respect to Kramers’ theory, Eqs.~1!–~3!.
As one could expect, the existence of nontrivial thresho
for the occurrence of transitions is one of these features.
will see how it comes about and how it can be characteri
quantitatively. A number of further features will also be ide
©2003 The American Physical Society11-1
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tified, finding their origin in the fact that the probability den
sities associated to low-dimensional deterministic dynam
systems are defined on finite supports.

The general formulation is developed in Sec. II. Sectio
III and IV deal, respectively, with the cases of periodic a
chaotic forcings. The conditions for the existence of tran
tions across the barrier are established. Analytic results
derived on the characteristics of the transitions, compa
with and complemented by numerical simulations. Sectio
is devoted to the probabilistic properties of the respon
with emphasis on the connections between the probab
densities obtained by our analysis and the universal st
distributions of probability theory. The main conclusions a
summarized in Sec. VI.

II. GENERAL FORMULATION

Throughout this work we consider systems which, in t
absence of forcing, admit two simultaneously stable ste
states arising through a supercritical pitchfork bifurcatio
The amplitude of the deterministic forcing function relati
to the distance from the pitchfork bifurcation will be tune
through a parameter«. Using the normal form of the supe
critical pitchfork bifurcation@3#, one may thus write the fol-
lowing evolution equation replacing Eq.~1!:

dz

dt
5lz2z31«x~ t !, ~4!

where x(t) is one of the output variables of an~low-
dimensional! ergodic deterministic dynamical system a
sumed for simplicity to be of zero mean,^x&50. Some spe-
cific examples considered in Secs. III and IV include t
harmonic oscillator, uniform quasiperiodic motion on a tor
the Lorenz equations, or the periodically forced Duffing o
cillator. In this setting, the steady state solutions in the
sence of the forcing are

z656l1/2 ~stable!,
~5!

z050 ~unstable!.

The potentialU and the potential barrierDU are given by

U52l
z2

2
1

z4

4
, ~6a!

DU5U~z0!2U~z6!5
l2

4
. ~6b!

The effective strength of the forcing will be characterized
a suitably chosen norm,«uxu. For forcings having nontrivial
statistical properties, in order to achieve a meaningful co
parison with Kramers’ theory we will be led to relate th
norm to the forcing variance

«2uxu25q25«2^x2&, ~6c!

where the brackets denote an average taken over the in
ant probability density ofx.
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A. The adiabatic limit

To gain a first insight into the behavior of the system ju
defined, we introduce the scaled variables and paramete

z5l1/2w,
~7!

«5l3/2h,

being understood thatw, x, andh are ofO(1). Oneobtains

l21
dw

dt
5w2w31hx~ t !. ~8!

It follows that if l21 is much smaller than the characterist
time of x(t) the right hand side of Eq.~8! can be set equal to
zero. In thisadiabatic approximation,

w32w2hx50, ~9!

the forcing acts as an imperfection perturbing the pitchfo
bifurcation. Turning to the initial variables, this leads to
hysteretic behavior ofz versus«x, depicted in Fig. 1~here as
well as in the subsequent figures the quantities plotted
dimensionless!. Starting, say, from the lower branch at poi
(z52l1/2,«x50), the system will remain trapped in thi
branch as long as the forcing has not reached a value co
sponding to the right limit point of theS-shaped curve. Be-
yond this threshold the system will rapidly reach the upp
branch~in view of the time scale difference referred earlie!
and will remain therein until the forcing reaches a seco
threshold value corresponding to the left limit point, and
on. This leads us to a first estimate of the threshold value
the forcing strength necessary to induce transitions betw
the two stable states,

«cuxu'
2

3)
l3/2, ~10!

FIG. 1. Hysteretic behavior of the responsez versus the forcing
«x in the adiabatic limit of Eq.~4! with l51. The arrows indicate
the direction of evolution of initial perturbations.
1-2
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where the right hand side is obtained by the condition t
the discriminant of the cubic equation~9! should vanish in
order to have a double real root.

B. Liouvillian dynamics

In order to establish the connection with the white no
limit and Kramers’ theory, it is necessary to address
probabilistic properties of the system. The probability de
sity r(z;«x) for a valuez conditioned by a given value of th
forcing satisfies the Liouville equation@3#

]r~z;«x!

]t
52

]

]z
@lz2z31«x#r~z;«x!. ~11!

A more relevant quantity is the reduced probability dens
q(z), obtained by averaging the fullr over the realizations
of thex process~sincex is deterministic this implies averag
ing over an ensemble of initial conditions!,

q~z,t !5E dx p~z;«x!rs~x!, ~12a!

where rs(x) is the invariant probability ofx. Since rs is
normalized to unity, the passage fromr to q̄ can be viewed
as a projection,

q5Pr, P25P. ~12b!

Introducing the Liouville operator

Lt52
]

]z
@lz2z31«x~ t !# ~13!

and acting on both sides of Eq.~11! successively byP and
I 2P, one obtains two coupled equations forq and (I
2P)r. Solving formally the second equation with an initi
condition in theP space results in a closed equation forq,

]q~z,t !

]t
5PLq~z,t !1PLE

0

t

dt8k~ t,t8!~ I 2P!Lt8q~z,t8!,

~14!

where the operatork is defined by its formal series expan
sion

k511E
t8

t

dt1~ I 2P!Lt1
1E

t8

t

dt1

3E
t8

t

dt2~ I 2P!Lt1
~ I 2P!Lt2

1¯ . ~15!

In this most general form, Eq.~14! is intractable. To ob-
tain some useful information we therefore truncate the i
nite series~15! to the first nontrivial~here second! order in«
in the limit of small«. To allow for transitions between state
one should further consider the limit of smalll ~vicinity of
the pitchfork bifurcation!. One obtains then after a straigh
forward calculation,
04621
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]q~z,t !

]t
52

]

]z
~lz2z3!q~z,t !1«2

]2

]z2

3E
0

t

dt8 C~ t2t8!q~z,t8!, ~16a!

whereC(t2t8) is the autocorrelation function of thex pro-
cess,

C~ t2t8!5^x~ t !x~ t8!&. ~16b!

We stress that truncation to second order alters some of
properties of the exact distribution satisfying the full E
~14!, in particular, its having a finite support as discuss
extensively later in this paper. The motivation for consid
ing this limit is that it allows one to identify a nontrivia
difference with the Fokker-Planck equation~2!, namely, the
non-Markovian character of the dynamics ofq. This feature
reflects the deterministic origin of the forcing and will als
be responsible for some differences of the statistics of tr
sition times as compared to white noise-driven systems
seen in Sec. IV.

One can obtain an indication of the role of memory e
fects by comparing the contribution of the second term in E
~16a! to the contribution of standard diffusion. Performin
successively a Fourier and a Laplace transform and appl
the convolution theorem, one has

@s1«2k2C̃~s!#q̃k5q~0!, ~17!

where k and s are, respectively, the Fourier and Lapla
transform variables, the tilde denotes the Laplace transf
andq(0) is the initial distribution.

As well known the time-dependent properties of the pro
ability distribution depend on the singularities of its Lapla
transform or, equivalently, on the zeros of the factor mu
plying q̃k(s) in Eq. ~17!. To fix ideas we consider the fol
lowing model correlation function:

C~ t !5e2gt cosvt,

C̃~s!5
s1g

~s1g!21v2 ,

which reproduces the qualitative features of the correlat
function of a typical chaotic attractor. The singularities
q̃k(s) are then given by

s52«2k2
s1g

~s1g!21v2 ~18a!

to be compared with those of the Markovian limit obtain
by takings50 in the right hand side of Eq.~18a!,

sM52«2k2
g

g21v2 . ~18b!

Solving Eq.~18a! iteratively for smalls ~small k!, one ob-
tains
1-3
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s'2«2k2
g1sM

~g1sM !21v2 'sM1sM
2 v22g2

g~g21v2!
. ~19!

SincesM is negative,s will be smaller in absolute value tha
usMu as long asv.g or, equivalently, as long as the deca
time of the correlation is not smaller than the period of t
background oscillation. This condition is expected to be s
isfied in systems generating deterministic chaos organ
around an unstable periodic or a homoclinic orbit. Und
these conditions the spectrum of characteristic times of
fusion will be shifted toward larger values. We have he
identified a second signature of the deterministic characte
the forcing: whenever transitions are possible~which accord-
ing to Sec. II A can happen only when a certain thresh
condition is satisfied!, they are expected to occur on a tim
scale longer than the one provided by Kramers’ equation~3!.

In the sequel, the analysis of this section will be applied
systems subjected to periodic and to chaotic forcings.

III. PERIODIC FORCING

We first consider a purely harmonic forcing. Equation~4!
becomes

dz

dt
5lz2z31a cosvt. ~20!

Under the scaling of Eq.~7! the adiabatic limit is readily
achieved by takingv!l. Owing to the absence of intrinsi
variability the natural norm in the threshold condition of E
~10! is the maximum norm—the forcing amplitude. Th
yields

ac5
2

3)
l3/2. ~21!

The numerical integration of Eq.~20! confirms fully this
condition. Figure 2~a! depicts the responsez in the case of
v50.1, l52 and a value well above the threshold. As c
be seen the variable performs transitions between the ba
of attraction of the stable states6l1/2 of the unforced sys-
tem, with a periodicity equal to that of the forcing. The r
sponse is markedly nonsinusoidal, owing to the nonlinea
of the intrinsic dynamics ofz. An alternative representatio
in the form of a bifurcation diagram is provided in Fig. 2~b!,
where the amplitude of the response is plotted againsta. We
observe a sharp transition between a small amplitude o
lation around state6l1/2 and a large amplitude one aroun
zero associated to transitions between the two stable stat
a critical value which is numerically indistinguishable fro
Eq. ~21!.

A more intricate situation relates to the presence of m
tiperiodic or quasiperiodic forcing. To fix ideas, consider
forcing deriving from a uniform quasiperiodic motion. Equ
tion ~4! becomes

dz

dt
5lz2z31

a

&
~cosv1t1cosv2t !. ~22a!
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The maximum norm and the standard deviation of
forcing are, respectively,

uxumax5&a,
~22b!

q5
a

&
.

We choosev1!l and varyv2 gradually from values close
to v1 to values comparable to or greater thanl. In all cases,
a transition from a small amplitude oscillation around one
the stable states6l1/2 to a large amplitude oscillation
around zero is observed as seen in Fig. 3~a!. The correspond-
ing critical amplitudesac vary according to the relationshi
betweenv2 andl, see Fig. 3~b!. Forv2 significantly smaller
than l, ac is obtained when the maximum norm is used
Eq. ~10!,

FIG. 2. ~a! Long time evolution ofz in the presence of a purely
harmonic forcing, Eq.~20!, with an amplitude well above threshol
~21! as provided by the adiabatic approximation. Parameter va
are l52, v50.1, anda52l3/2.ac . ~b! Bifurcation diagram de-
scribing the birth of a large amplitude oscillation of the type d
picted in~a! beyond the critical value of the forcing amplitude@Eq.
~21!#.
1-4
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ac5
&

3)
l3/2 ~v2!l!.

In contrast, asv2 becomes significantly larger thanl the
threshold condition~10! is to be formulated in terms of th
variance, yielding

ac5
2&

3)
l3/2 ~v2@l!.

This result has a straightforward explanation. When all fo
ing modes are much slower that the system’s character
times, the adiabatic approximation holds globally. A tran
tion will therefore take place as soon as the maximum va
of the forcing will exceed the threshold of Eq.~10!. When on
the contrary the time scales of the forcing and of the sys
mix, the adiabatic approximation holds only for the slo

FIG. 3. ~a! As in Fig. 2~a! but in the presence of a quasiperiod
forcing with v150.1,a52l3/2, v25&v1 . ~b! Dependence of the
critical forcing amplitudeac necessary for the birth of a large am
plitude quasiperiodic oscillation on frequencyv2 keepingv1 andl
at the same values as in~a!.
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modes. The fast modes are ineffective in causing a transit
and this increases the value of the critical amplitude nee
to overcome the threshold. The variance provides, then
more adequate measure of the effective strength. This wil
confirmed further in Sec. IV devoted to the effects of a ch
otic forcing.

In the remaining part of this section we will be interest
in the solutions of Eq.~20! in the vicinity of the bifurcation
point and in the limit of weak forcing amplitude. This wi
allow us to achieve a quantitative understanding of some
aspects of the dynamics of the transitions.

A. The inner expansion

To allow for transitions between states in the above lim
one must make sure that the forcing amplitude compe
with the distance from the bifurcation. This brings us in t
domain of singular perturbation analysis and, in particular
the inner expansion@4#. Specifically, we adopt the following
scaling in Eq.~20!:

a5«b,
~23!

l5«2n, «!1

along with an expansion ofz in powers of«,

z5«z11«2z21«3z31¯ . ~24!

To the first few orders, Eq.~20! becomes

dz1

dt
5b cosvt, ~24a!

dz2

dt
50, ~24b!

dz3

dt
5nz12z1

3. ~24c!

Equation~24a! can be integrated straightforwardly to yield

z15
b

v
sinvt1C. ~25!

The integration constantC, which also provides the time
average of the dominant partz1 of the solution, is determined
from the solvability condition of Eq.~24c!. In the present
case this condition merely requires that the time average
the right hand side vanishes. Utilizing the fact that the tim
averages of both sinvt and sin3 vt vanish, one obtains after
straightforward calculation the following algebraic equati
for C,

S n2
3b2

2v2DC2C350. ~26!

Equation~26! admits three solutions,

C050, ~27a!
1-5
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C656S n2
3b2

2v2D 1/2

. ~27b!

The latter bifurcate from the trivial solution at a valuenc
53b2/2v2 or, reestablishing the original parameters,lc
53a2/2v2. Remembering that in the absence of forcing o
has lc50 and bifurcating branches equal toz'«z15
6«n1/2 one deduces that the presence of the forcing p
serves the character of the unperturbed pitchfork bifurcat
but shifts the bifurcation point to the right. Now, in the r
gime of transitions between states one must clearly hav
vanishing long time average ofz. This means that the solu
tion C050 should prevail or, alternatively, thatC6 are not
real quantities. This can be achieved either by a sufficie
large amplitudeb, or by a sufficiently low frequencyv. The
latter condition leads us to the adiabatic approximation a
lyzed earlier in this section, while the former conditio
yields

b.bc5A2

3
vn1/2

or, reestablishing the original parameters,

a.ac5A2

3
vl1/2. ~28!

This relation replaces the threshold condition~21! obtained
in the adiabatic approximation, to systems which oper
near bifurcation and do not exhibit the time scale separa
required by this approximation. Finally, whena,ac the sys-
tem performs asymptotically oscillations around a me
value given byC2 or C1 , depending on the initial condi
tion.

The above results are fully corroborated by the numer
integration of Eq.~20! under the conditions of Eq.~23!. Fig-
ures 4~a,b! describe the time dependence ofz obtained when
the forcing amplitude is, respectively, larger and smaller th
the threshold valueac . The corresponding bifurcation dia
gram is depicted in Fig. 4~c!. As it turns out the threshold
value ~28! is reproduced with high accuracy.

From the outset, the analysis performed in this section
been limited to the long time behavior of the solutions. O
the other hand, as Fig. 4~b! shows, the basins of attraction o
C1 andC2 are not entirely limited to, respectively, positiv
and negativez’s. This implies that the dynamics should in
volve nontrivial transient behavior such as an initial con
tion in the rangez(0),0 evolving toward a stable oscilla
tion aroundC1 and, conversely, an initial condition in th
range z(0).0 toward a stable oscillation aroundC2 . In
both cases one would witness an escape over the barrier.
problem is addressed in the following section.

B. Transient behavior: escape over the barrier

The most favorable situation for crossing the barrier in
subcritical casea,ac is to start near the unstable statez
50 of the unforced system. Equation~20! can then be lim-
ited to its linear part,
04621
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dz

dt
5lz1a cosvt, ~29a!

whose solution is given by

z5z~0!elt1a
lelt2l cosvt1v sinvt

l21v2 . ~29b!

It is understood that the system still operates in the rang
the scaling of Eq.~23!.

We assume~without loss of generality! that z(0),0. We
stipulate, in agreement with the numerical solution of the f
Eq. ~20!, that the escape over the barrier and the stabiliza
to a stable oscillation aroundC1 will occur when z„(n
11)T…2z(nT) will be positive for n50,1,..., whereT
52p/v is the forcing period~Fig. 5!. Using Eq.~29b! we
can write this inequality forn50 in the explicit form

z~0!.zc52
al

l21v2 . ~30!

We see that the range of initial conditions escaping fromz
,0 is enhanced asv andl are decreased. These rather
tuitive conclusions are fully corroborated by the construct
of ‘‘state diagrams’’ from the numerical solution of the fu
Eq. ~20!.

The above analysis can be extended to include the de
dence on the phase of the forcing, by solving Eq.~29a! with
a forcing terma cos(vt1u). The analytic and numerical re
sults are summarized in Fig. 6. Notice the enhanced des
lization for negative forcing phases. This can be underst
qualitatively by observing that with such phases the forc
keeps a positive value until the response reaches a se
maximum larger than the first one, thereby allowing the s
tem to attain a ‘‘point of no return’’ beyond which escape
inevitable.

We next provide estimates of the time necessary to c
the barrier starting from a certainz(0), under the escape

FIG. 5. Transient behavior ofz under the conditions of Fig. 4~b!
starting fromz(0)520.05 ~full line! and z(0)520.062 ~dashed
line! with parameter valuesl50.2, a50.1, andv50.5.
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condition of Eq.~30!. To this end we derive an evolutio
equation for the excess variableu(t)5z(t1T)2z(t) intro-
duced above, see Ref.@5#. From Eq. ~20! one obtains
straightforwardly, utilizing the periodicity of the forcing,

du

dt
5~l23z2!u23zu22u3.

In the linearized analysis adopted in this section, one o
needs to retain the first term in the right hand side, yield

u~ t !5u~0!expFlt23E
0

t

dt8 z2~ t8!G . ~31!

For consistencyu(0)[z(T)2z(0) is to be evaluated from
Eq. ~29b!, andz2(t8) in the integral is to be replaced by it
initial value. The time needed to reach a finite level ofu(t),
sayD, can now be estimated by inverting Eq.~31!,

t'
1

l23z2~0!
ln

D

@z~0!2zc#~elT21!
, ~32!

wherezc is given by Eq.~30!. Using a uniform ensemble o
initial conditions in the range (zc,0) one can express th
mean crossing timêt& as

^t&5
1

uzcu
E

zc

0

dz~0!
1

l23z2~0!
ln

D

@z~0!2zc#~elT21!

or, for uzcu→0

^t&'
1

l23zc
2 ln

1

uzcu
. ~33!

FIG. 6. Range of initial conditionsz(0) escaping eventually to
the solution of positive mean valuez1 and of negative mean valu
z2 versus the phaseu of the periodic forcing of Eq.~20! operating
near bifurcation under the conditions of Fig. 4~b!. Full line repre-
sents the numerical results after a transient time of 5032p/v and
dashed line stands for the linearized estimate Eq.~30!. Parameter
values arel50.2, v50.5, anda50.1.
1-7
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C. NICOLIS AND G. NICOLIS PHYSICAL REVIEW E67, 046211 ~2003!
This expression predicts a logarithmic increase of^t& with
the forcing amplitude—the analog of the parameterq in
Kramers’ formula ~3!—for small forcings, followed by a
minimum at a value ofa of the order ofl1/2. This result may
be qualified as a stochastic resonancelike effect in the s
that there is an optimal forcing strength for which transitio
are facilitated. Alternatively, one may also speak of reson
activation in the sense of Ref.@1# The point is that this type
of behavior is quite different from the behavior predicted
Kramers’ theory. It is also fully corroborated by numeric
solutions of the full equation as shown in Fig. 7.

IV. CHAOTIC FORCING

In this section we deal with the case where the forc
x(t) in Eq. ~4! is one of the output variables of a continuou
time chaotic dynamical system. To set the stage we depic
Fig. 8 the time dependence of the responsez(t) to a forcing

FIG. 7. Time needed in the mean to reach eventually solutionz1

starting from negativez versus the amplitudea of the periodic forc-
ing under the conditions of Fig. 6 withu50. Initial conditions scan
2000 values 0<z(0)<21.

FIG. 8. Long time evolution ofz, Eq. ~4! sampled every 1 time
unit, when the forcing is provided by variablex of the Lorenz
system withr 528, s510, andb5

8
3 , and forl51, «50.07.
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x(t) corresponding to thex variable of Lorenz’s classic cha
otic attractor (r 528, s510, b5 8

3 , Ref. @6#! and to a cou-
pling parameter«50.07. We see that the variable perform
transitions between the attraction basins of the two sta
states of the unforced system. To gain a first understandin
the mechanism of these transitions we refer once again to
adiabatic limit~Fig. 1!. For the parameter values of Fig. 8
the estimate of Eq.~10! would give a threshold value for th
transitions to be switched on ofqc50.385. The numerica
solution of Eq.~4! yields the slightly larger value of 0.406
for a waiting time interval 105 time units. The difference is
acceptable, in view of the fact thatx(t) involves a multitude
of time scales as a result of which the adiabatic limit can
be defined as sharply as in the periodic case.

To understand the kinetics of the transitions we consid
in Fig. 9, a zoomed slice of the time series of Fig. 8 alo
with the time variation of the forcing. As can be seen, t
transition ~here from negative to positive values ofz! re-
quiresrepeatedcrossings of the thresholdqc by the forcing
during a time interval much longer thanl21 throughout
which, in addition, the forcing remains positive. The need
such a build up reflects the nontrivial intrinsic variability o
the forcing and the inertia of the underlying system—in tu
a consequence of its deterministic character. Similar res
are derived~not shown here!, in the presence of forcings
corresponding to thex variable of the Lorenz’s attractor in
the range of intermittent behavior@7#, or to the position vari-
able of the periodically forced Duffing oscillator@8#. Notice
that in the presence of intermittency the threshold estimat
Eq. ~10! vastly underestimates the actual value. This refle
the failure of the adiabatic approximation in this case, a f
that can be attributed to the long range correlations cha
teristic of the intermittent regime.

An interesting view of the response of the system to
chaotic forcing is provided by Fig. 10, where the time cro
correlation^x(t)z(t8)& of the variablesx andz ~full line! is
depicted. We see that the characteristic decay time is v
large, much larger than the correlation time of the forci
and the relaxation time of the unforced system. For comp

FIG. 9. Kinetics of a transition ofz from statez2 to z1 ~dark
line! superimposed to the chaotic evolution of the forcing with t
same parameter values as in Fig. 8.
1-8
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son we also plot~broken line! the cross correlation for a
white noise forcing giving rise to the same mean transit
time. Long time memory effects have now completely disa
peared. These results add credence to the interpretation o
results of Fig. 9 advanced above.

We turn now to a more quantitative analysis of the tra
sitions depicted in Figs. 8 and 9. Figure 11~empty circles!
describes the dependence of the numberN of transitions de-
tected in a given~long! time interval for the same type o
forcing as in Figs. 8 and 9, as a function of the varianceq2

5«2^dx2& introduced in Sec. II. As expected,N tends to zero
for q below some value—the threshold value identified e
lier in this section. Furthermore, the slope of lnN versusq2

appears to be very abrupt near this threshold. This is re
niscent of the critical slowing down near the limit point b
furcation associated toqc ~Fig. 1! and suggests a dependen

FIG. 10. Cross correlation of the variablez(t) and forcing«x(t)
under the conditions of Fig. 9~full line! and the ones provided
when «x(t) is a Gaussian white noise with varianceq250.15
~dashed line! such that mean residence times in the attraction ba
of the stable states are equal in both systems.

FIG. 11. Number of transitions during 105 time units versusq2

for the system of Fig. 8~empty circles! and the one correspondin
to Kramers’ theory~full circles!. Full line stands for the best fit by
Eq. ~34! with D51.3247,qc50.406, andNo513 969.
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of ln N in (q22qc
2)21/2, see Ref.@9#. The full line in Fig. 11

gives a fitting of the numerical data by a function of the for

N5N0 expF 2D

~q22qc
2!1/2G . ~34!

The agreement is quite satisfactory, thereby corroborating
arguments just advanced. The exponentD featured in Eq.
~34! can be interpreted as an effective, forcing-modified ‘‘p
tential barrier’’ and the prefactorN0 is proportional to the
time interval considered and inversely proportional to t
intrinsic time scale of the unforced system.

The upper part in Fig. 11~full circles! describes the be
havior of N as deduced from Eq.~4! subjected to a white
noise forcing of variance equal to«2^dx2&. We are therefore
here in the domain of validity of Kramers’ theory@N being
inversely proportional tôt&, Eq. ~3!#. Two major differences
with the chaotic forcing-induced transitions are appare
First, as pointed out already, there is now no threshold va
of q: transitions are switched on as soon asq2 is not zero.
And second, for any given values ofq2 aboveqc

2 transitions
are more frequent in the presence of white noise. This
flects the effect of correlations present in the determinis
forcing. It is also in accord with results where white noi
forcing is replaced by a colored noise one, as reviewed
Ref. @1#. Notice that the range of validity of Kramers’ theor
is actually restricted to values ofq2 less than or about equa
to qc

2, since for the values considered in Fig. 11 the poten
barrierDU is equal to 0.25.

Similar results~not shown here! are derived for a forcing
x(t) given by Lorenz’s equations in the intermittent regio
@7# and by the periodically forced Duffing oscillator@8#. The
main differences are as follows. In the first case, as m
tioned earlier, the thresholdqc is much higher. The fitting
with Eq. ~34! is also less satisfactory, owing presumably
the fact that the adiabatic limit and hence the relevance of
limit point bifurcation~Fig. 1! are not applicable. As for the
second case, one observes a plateau region of lnN for inter-
mediate values ofq. We conjecture that this reflects the b
modal character of the probability density associated tox,
entailing that the variance is no longer as representative a
the monomodal case corresponding to Fig. 11.

The results pertaining to Fig. 11 can also be expresse
terms of the transition times themselves. We first recall t
as it was already remarked, the mean transition times
inversely proportional to the quantity plotted in Fig. 11.
more comprehensive information is provided by the pro
ability density of the transition times. In white noise-drive
bistable systems this distribution is exponential in the Kra
ers’ regime@10#,

P~t!5^t&21 exp~2t/^t&! ~white noise-driven system!.

~35!

Figure 12 summarizes the differences arising when
bistable system is driven by a chaotic forcing. Here the pr
ability densities are plotted for two different values of th
variance, curves~a! and ~b!. We observe a difference of th
densities associated to chaotic forcings~full lines! from the

in
1-9
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C. NICOLIS AND G. NICOLIS PHYSICAL REVIEW E67, 046211 ~2003!
law of Eq. ~35! in the form of a depression for smallt’s
followed by an overshoot and, finally, by a rap
exponential-like decrease. We suggest that the origin of
behavior is in the non-Markovian character of the trunca
Liouvillian dynamics~Sec. II B!, entailing that transitions in
the range of short times are penalized. We have also plo
in the same figure the probability densities of transition tim
corresponding to a white noise~dashed lines!. To render the
comparison meaningful, we consider distributions having
same mean transition times@^t&;55 ~a!; ^t&;120 ~b!# as
those generated by the chaotic forcing~meaning that the as
sociated variance values are different!. While in the white
noise-driven system the exponential of Eq.~35! provides a
perfect fit, the distribution in the chaotically driven system
significantly different for times up to values of the order
the mean valuêt&.

We finally address the effect of a weak chaotic forci
acting in the vicinity of the pitchfork bifurcation of the un
forced system. The main point is that in the range of
scaling of Eq.~23! the expansion of Eq.~24! becomes inad-
equate. Specifically, it leads to the dominant order to
equation

dz1

dt
5x~ t !, ~36!

which defines anonstationaryprocessz as long asx(t) is a
stationary process with a finite correlation time, as is the c
of typical chaotic systems contrary to periodic ones~see Sec.
V for a more detailed discussion of this point!. To get some
insight on the response we therefore adopt the more tr
tional outer expansion@5# in which z in Eq. ~4! is expanded
as

z56l1/21«z11«2z21¯ , ~37!

FIG. 12. Probability densities of transition times when the s
tem is driven by thex variable of the Lorenz system of varianc
q250.40 ~a! andq250.31 ~b! ~full lines!; and by a Gaussian white
noise~dotted lines! leading to the same mean value^t& as the de-
terministic forcing as obtained from 50 000 transitions. The ass
ated forcing variances in this latter case areq250.20 and q2

50.15, respectively.
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keeping first the parameterl to O(1). Taking, to fix ideas,
the plus sign in Eq.~37! one obtains to the first few orders

dz1

dt
522lz11x~ t !, ~38a!

dz2

dt
522lz223l1/2z1

2. ~38b!

The solution of Eq.~38a! subject toz1(0)50 is

z1~ t !5e22ltE
0

t

dt e2ltx~t! ~39!

with ^z1&50. In contrastz2 has a nontrivial average valu
given by

^z2&52
3

2l1/2^z1
2&. ~40!

This contribution can be qualified as ‘‘destabilizing’’ in th
sense that the gap between the reference statel1/2 of the
unforced system and the unstable statez50 is reduced.
Computing^z1

2& from Eq. ~39! one obtains

^z1
2&52

3

2l1/2e24ltE
0

t

dt8E
0

t

dt9 e2l~t81t9!Cxx~t82t9!,

~41!

whereCxx(t) is the autocorrelation function of the forcin
variable x. As an example for an exponentially decayin
Cxx ,

Cxx~ t !5C0e2gutu, ~42!

one obtains

^z2&52
3C0

2l1/2

1

2l~2l1g!
. ~43!

This provides one with an estimate of the threshold value
«2C0 ~the analog ofq2 of our previous analysis! necessary to
overcome the unstable pointz50,

l1/21«2^z2&c50,

or

~«C0
1/2!c'

2l

)
~2l1g!1/2 ~44!

to be compared with Eq.~29! derived in the case of the
periodic forcing. For« below this value the long time behav
ior of the system will be a chaotic oscillation around a me
given by6(l1/21«2^z2&); and for« above this value tran-
sitions between the two attraction basins of the unforced s
tem are expected. These predictions are corroborated by
numerical solution of the full equations.

-

i-
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V. PROBABILISTIC STRUCTURE OF THE RESPONSE

In this section we analyze the consequences of the p
erty of x(t) to derive from a probability distribution posses
ing a bounded supportas opposed to the infinite support
the normal distribution involved in Gaussian white noise a
of other universal distributions of probability theory. Th
specific question we shall address pertains to the reper
sions of this property in the probabilistic structure of t
response variablez. Could it be that the probability distribu
tion of z is attracted toward one of the stable laws of pro
ability theory@11# or, rather, does it keep a finite support a
if so how is it related to the characteristics ofr(x). We shall
limit our analysis to forcings generated by low-dimension
chaos. High-dimensional chaotic dynamical systems suc
spatially extended systems or coupled locally chaotic c
are indeed known to produce, under certain conditions, p
ability distributions approaching those of stochastic syste
@12#.

In order to disentangle the relative roles of damping a
of nonlinearity we first consider the limiting situations ass
ciated to two truncated versions of Eq.~4! before addressing
the full problem,

dz

dt
5«x~ t !, ~45!

dz

dt
52lz1«x~ t !, ~46!

to which we shall refer, respectively, as the generaliz
Wiener process and the generalized Ornstein-Uhlenbeck
cess.

A. The generalized Wiener process, Eq.„45…

Integrating Eq.~45! one has

z~ t !2z~0!5«E
0

t

dt x~t!'«Dt(
j 51

NDt

x~ j Dt !. ~47!

In this representationz(t)2z(0) is expressed as a sum
variables, each term of the sum being distributed accord
to a density carried by a finite interval~which is the same for
all terms in view of ergodicity!. On the other hand, keepin
in mind that^x&50 and hencêz&50 as well one obtains fo
the variance ofz,

^dz2&5«2E
0

t

dtE
0

t

dt8^x~t!x~t8!&

'2«2E
0

t

dtE
0

t

dhCxx~h!.

As long asCxx(h) is short ranged, the upper limit of th
second integral can be pushed to infinity and one has

^dz2&'t ~48!
04621
p-

d

s-

-

l
as
ls
b-
s

d
-

d
ro-

g

indicating a diffusive behavior ofz. More to the point, the
conjunction of Eq.~48!, in particular of the fact that̂dz2&
→`, and of the finite support of the terms in the sum~47!
implies that the Lindeberg condition familiar from probab
ity theory is satisfied@11#. It follows that the distribution ofz
tends to the normal distribution, one of the stable laws
probability theory and the only for which a second mome
exists. The dashed and dotted lines of Fig. 13 depict
density ofz at two different times resulting from numerica
integration of Eq.~45! and with a forcingx given by the
Lorenz x variable, while the full one is a fit by a Gaussia
distribution having the same variance. The agreement is v
satisfactory. Clearly, we have here a universal mechanism
deterministic diffusion.

B. The generalized Ornstein-Uhlenbeck process, Eq.„46…

The solution of Eq.~46! reads

z~ t !2z~0!5«e2ltE
0

t

dt eltx~t!

'«Dt(
j 51

NDt

e2lDt~N2 j !x~ j Dt ! ~49!

implying thatz(t)2z(0) is again a sum of terms each one
which possesses a distribution with a finite support. But
contrast to the case in Sec. V A, the variance ofz(t)2z(0) is
now

^dz2&52«2e22ltE
0

t

dt e2ltE
0

t

dh e2lhCxx~h!.

While, as in Sec. V A, the second integral gives a finite co
tribution, the divergence found in Sec. V A is now counte
acted by the exponentially decaying factore22lt, entailing
that ^dz2& tends to a finite value ast→`. It follows that the
Lindeberg condition is not satisfied this time and, since

FIG. 13. Probability density ofz, Eq.~45!, with x(t) the variable
x of the Lorenz system aftert550 time units~dashed line! and t
5100 time units~dotted line!. Full line is a Gaussian probability
density with the same variance.
1-11
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C. NICOLIS AND G. NICOLIS PHYSICAL REVIEW E67, 046211 ~2003!
distribution of x itself is not Gaussian~contrary to a white
noise forcing, see Ref.@13#!, the distribution ofz will not be
attracted by the Gaussian distribution@11#. As a matter of
fact it will not be attracted by any of the other stable la
since, contrary to these laws, it possesses a second mom
The dotted line in Fig. 14 depicts the asymptotic (t→`)
distribution of z when Eq.~46! is forced by the Lorenzx
variable~the distribution of which is shown in the figure b
the full line!, as obtained from numerical integration. Th
distribution possesses now a finite support, contrary to
case of Fig. 13. Although its analytic structure cannot
obtained in closed form it can formally be represented as
infinite convolution along the lines of Ref.@11#, Chap. VIII 5.
The fine structure persists when thez space is divided into 50
up to ;20 bins, but no convincing explanation can be a
vanced at this stage.

C. The nonlinear case, Eq.„4…

We turn finally to the full nonlinear problem@Eq. ~4!#. For
a Gaussian white noise forcing«x(t), the probability density
of the responsez would be a bimodal distribution with two
equal maxima located atz56l1/2, a minimum atz50 and
tails tending exponentially to zero asuzu→`. In the presence
of a deterministic forcing~here given by the Lorenzx vari-
able! the situation is substantially different, as illustrated
the dashed line of Fig. 14. First, as in the two previous s
tions, r(z) is limited to a finite support. Furthermore, whi
the absolute minimum atz50 persists, the probability den
sity of the response seems to possess local minima atz5
6l1/2, reflecting the splitting of the probability mass on th
two sides ofz50 into two secondary peaks situated on t
two sides of6l1/2. This fine structure seems to be statis
cally stable: it persists when thez space is divided into 50 up
to ;25 bins, and disappears~to become a simple bimoda
distribution! only in the much coarser subdivision into 1
bins. We suggest that it may find its origin in the loc

FIG. 14. Probability densities of variablex of the Lorenz system
~full line!; of z, Eq. ~46! ~dotted line!; and of the full nonlinear
system, Eq.~4! ~dashed line! with l51 and«50.07 as obtained
after an integration of 106 time units sampled everyDt50.1 time
units.
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maxima of the probability density ofx on the two sides of
x50 atx values beyond the threshold value ofqc in Eq. ~10!
but below6l1/2. This favors transitions toz values different
from 6l1/2 and, since these states have sizable lifetimes
ing to the deterministic character of the dynamics, they c
tribute significantly to the probability mass. This accoun
for the inner secondary peaks. As for the outer ones, t
may simply reflect the fact thatr(z) must strictly drop to
zero not far from6l1/2. A similar phenomenon happens in
harmonically forced linear system, whose probability dens
displays an integrable singularity at the end points of
support.

VI. CONCLUSIONS

In this work some features brought when a dynami
system transits across a barrier under the effect of a de
ministic forcing have been identified, as compared to
familiar case of Gaussian white noise-induced transitio
Both the adiabatic limit and the vicinity of bifurcation hav
been explored for forcings deriving from low-dimension
dynamics such as simple harmonic, periodic nonharmo
quasiperiodic, and chaotic. It was shown that owing to
finite support of the probability density of the forcing, th
occurrence of transitions requires nontrivial threshold con
tions. This gives rise to a dependence of the rate of tra
tions on the forcing strength~variance! which is quite differ-
ent from the one featured by Kramers’ theory. This prope
in conjunction with the memory effects inherent in the det
ministic character of the forcing also entails that when p
sible, transitions occur on a slower time scale.

The finite support of the forcing probability density ha
also some repercussions in the probabilistic structure of
response. Typically, the response probability density a
possesses a finite support. As a result it has no unive
character, contrary to the stable distributions featured in
probability theory. It is only in the limit where the nonlinea
ity and the damping are absent, referred as the ‘‘general
Wiener process’’ in Sec. V, that one tends to a stable law
the form of the Gaussian distribution, reflecting the onset
deterministic diffusion.

The work reported in this paper can be extended in s
eral ways. For one-variable systems, other types of bifur
tion such as the limit point and transcritical bifurcations
well as higher codimension phenomena~butterfly catastro-
phes, etc.! deserve study. Another interesting class is mu
variate systems, since they can possess simultaneously s
steady states, limit cycles and more complex sets, separ
by nontrivial invariant manifolds. Finally, a natural questio
to raise is whether, in this setting, stochastic resonance
effects could be induced by the presence of a secondary
riodic forcing.

ACKNOWLEDGMENTS

The present work was supported, in part, by the Belg
Federal Office for Scientific, Technical and Cultural Affai
under Contract No. MO/34/004 and by the European Sp
Agency.
1-12



.

-

TRANSITIONS ACROSS A BARRIER INDUCED BY . . . PHYSICAL REVIEW E67, 046211 ~2003!
@1# For a review, see P. Ha¨nggi, P. Talkner, and M. Borkovec, Rev
Mod. Phys.82, 251 ~1990!.

@2# P. Gaspard,Chaos, Scattering and Statistical Mechanics~Cam-
bridge University Press, Cambridge, 1998!.

@3# G. Nicolis, Introduction to Nonlinear Science~Cambridge Uni-
versity Press, Cambridge, 1995!.

@4# S. Rosenblat and D. Cohen, Stud. Appl. Math.63, 1 ~1980!.
@5# M. Gitterman and G. Weiss, J. Stat. Phys.70, 107 ~1993!.
@6# E. Lorenz, J. Atmos. Sci.20, 130 ~1963!.
@7# C. Sparrow,The Lorenz Equations~Springer, Berlin, 1982!.
@8# J. Guckenheimer and Ph. Holmes,Nonlinear Oscillations, Dy-
04621
namical Systems and Bifurcations of Vector Fields~Springer,
Berlin, 1983!.

@9# G. Dewel, P. Borckmans, and D. Walgraef, J. Phys. Chem.88,
5442 ~1984!.

@10# C. Gardiner,Handbook of Stochastic Methods~Springer, Ber-
lin, 1983!.

@11# W. Feller,An Introduction to Probability Theory and its Appli
cations~Wiley, New York, 1971!, Vol. II.

@12# G. Nicolis, M. Op de Beeck, and C. Nicolis, Physica D103, 73
~1997!.

@13# J. Doob, Ann. Math.43, 351 ~1942!.
1-13


